groups for which the noncommuting graph is a split graph

نویسندگان

marzieh akbari

alireza moghaddamfar

چکیده

the noncommuting graph $nabla (g)$ of a group $g$ is asimple graph whose vertex set is the set of noncentral elements of$g$ and the edges of which are the ones connecting twononcommuting elements. we determine here, up to isomorphism, thestructure of any finite nonabeilan group $g$ whose noncommutinggraph is a split graph, that is, a graph whose vertex set can bepartitioned into two sets such that the induced subgraph on oneof them is a complete graph and the induced subgraph on the otheris an independent set.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The edge tenacity of a split graph

The edge tenacity Te(G) of a graph G is dened as:Te(G) = min {[|X|+τ(G-X)]/[ω(G-X)-1]|X ⊆ E(G) and ω(G-X) > 1} where the minimum is taken over every edge-cutset X that separates G into ω(G - X) components, and by τ(G - X) we denote the order of a largest component of G. The objective of this paper is to determine this quantity for split graphs. Let G = (Z; I; E) be a noncomplete connected split...

متن کامل

the edge tenacity of a split graph

the edge tenacity te(g) of a graph g is de ned as:te(g) = min {[|x|+τ(g-x)]/[ω(g-x)-1]|x ⊆ e(g) and ω(g-x) > 1} where the minimum is taken over every edge-cutset x that separates g into ω(g - x) components, and by τ(g - x) we denote the order of a largest component of g. the objective of this paper is to determine this quantity for split graphs. let g = (z; i; e) be a noncomplete connected spli...

متن کامل

A GRAPH WHICH RECOGNIZES IDEMPOTENTS OF A COMMUTATIVE RING

In this paper we introduce and study a graph on the set of ideals of a commutative ring $R$. The vertices of this graph are non-trivial ideals of $R$ and two distinct ideals $I$ and $J$ are adjacent if and only $IJ=Icap J$. We obtain some properties of this graph and study its relation to the structure of $R$.

متن کامل

Finite groups admitting a connected cubic integral bi-Cayley graph

A graph   is called integral if all eigenvalues of its adjacency matrix  are integers.  Given a subset $S$ of a finite group $G$, the bi-Cayley graph $BCay(G,S)$ is a graph with vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(sx,2)}mid sin S, xin G}$.  In this paper, we classify all finite groups admitting a connected cubic integral bi-Cayley graph.

متن کامل

THE (△,□)-EDGE GRAPH G△,□ OF A GRAPH G

To a simple graph $G=(V,E)$, we correspond a simple graph $G_{triangle,square}$ whose vertex set is ${{x,y}: x,yin V}$ and two vertices ${x,y},{z,w}in G_{triangle,square}$ are adjacent if and only if ${x,z},{x,w},{y,z},{y,w}in Vcup E$. The graph $G_{triangle,square}$ is called the $(triangle,square)$-edge graph of the graph $G$. In this paper, our ultimate goal is to provide a link between the ...

متن کامل

A Kind of Non-commuting Graph of Finite Groups

Let g be a fixed element of a finite group G. We introduce the g-noncommuting graph of G whose vertex set is whole elements of the group G and two vertices x,y are adjacent whenever [x,y] g  and  [y,x] g. We denote this graph by . In this paper, we present some graph theoretical properties of g-noncommuting graph. Specially, we investigate about its planarity and regularity, its clique number a...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
international journal of group theory

ناشر: university of isfahan

ISSN 2251-7650

دوره

شماره Articles in Press 2015

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023